Mini Tutorial

Three Hours on Multiple Classifier Systems

PART II
PART II

Methods for creating classifier ensembles
Methods for creating MCS

- The effectiveness of MCS depends both on the base classifiers and the combination function

Several approaches have been proposed to create classifiers which should be “good” for combination. Among the others:

- Using problem and designer knowledge
- Injecting randomness
- Varying the classifier type, architecture, or parameters
- Manipulating training data
- Manipulating input features
- Manipulating output features
Using problem and designer knowledge

- When problem or designer knowledge is available, “complementary” classification algorithms can be designed quite naturally

- In applications with multiple sensors

- In applications where complementary representations of patterns are possible (e.g., statistical and structural representations)

- When designer knowledge allows varying the classifier type, architecture, or parameters to create complementary classifiers

These are heuristic approaches, perform as well as the problem/designer knowledge allows to design “complementary” classifiers which can be combined effectively
Injecting randomness

- Simple design methods are based on injecting randomness in the classification/training algorithm
 - Neural Networks: the back-propagation algorithm is often run several times using different (random) starting points (initial weights)
 - Decision Trees: the test at each internal node can be chosen randomly between the top \(n \) best tests
 - Random Forests (Leo Breiman, 2001)

These are basically heuristic approaches. We can only hope that they produce complementary classifiers. However, we have many experimental evidences which support this conjecture.
Methods based on training data manipulation

• These methods are based on training N classifiers with N different training sets

Data splitting
 – Training data are randomly subdivided into N disjoint subsets
 – Each classifier is trained on a different subset (infeasible for small training sets)

Cross-validated committees
 – Training data are randomly subdivided into N disjoint subsets
 – N overlapping training sets are constructed by dropping out a different one of the N subsets

➢ Bagging
➢ Boosting
Bagging

- Method proposed by L. Breiman (1996) for constructing multiple classifiers by training data manipulation

- Bagging is based on obtaining different training sets of equal size as the original one \(L \), by using a statistical technique named bootstrap

- The resulting training sets \(L_i \), \(i=1,\ldots,N \), contain usually small changes with respect to \(L \)
Bootstrap

- The bootstrap technique is based on the concepts of **bootstrap sample** and **bootstrap replication**

Bootstrap sample
- \(\mathbf{x}^* = (x_1^*, \ldots, x_n^*) \): random sample of size \(n \) drawn *with replacement* from the original sample \(\mathbf{x} = (x_1, \ldots, x_n) \)
- each sample in \(\mathbf{x} \) can appear in \(\mathbf{x}^* \) zero times, once, twice, etc.

Bootstrap replication
- a classifier trained with a bootstrap sample
Bagging (Bootstrap AGGregatING)

- **Rationale behind:**
 - Qualitative: instances of an *unstable* classifier constructed on different bootstrap samples can exhibit significant differences
 - Quantitative: variance reduction [Serrau et al., IEEE-T PAMI 2008]
Combining rules for Bagging

• Bagging is a method for constructing multiple classifiers, not a fusion rule

• In principle, any combining technique can be applied

• Usually, simple combining rules are used
 – simple averaging
 – majority vote

• Experimental results show that bagging is effective when used with simple combining rules.
• The optimality of the simple average rule has been also proved theoretically [Serrau et al, 08]
Examples of bagging (Breiman, 1996)

Single and Bagged Decision Trees (50 Bootstrap Replicates)
Test Set Average Misclassification Rates over 100 Runs

Misclassification Rates

- waveform
- breast cancer
- ionosphere
- diabetes
- glass
- soybean

Single Tree
Bagged Trees

Single and Bagged k-NN (100 Bootstrap Replicates)
Test Set Average Misclassification Rates over 100 Runs

Misclassification Rates

- waveform
- breast cancer
- ionosphere
- diabetes
- glass

Single k-NN
Bagged k-NN
The right number of bagged classifiers

• How many bagged classifiers are enough?
 – Experimental results show that 50 bootstrap samples are often sufficient for classification problems
 – Example for the soybean data set (Breiman, 1996):

![Graph showing the relationship between the number of bootstrap replicates and the misclassification rate.](image)

- Stopping Bagging, namely, determining the sufficient number of bagged classifiers is a crucial issue for real applications with strict constraints on memory size and CPU time.
The right number of bagged classifiers

Recently, Fumera, Roli, and Serrau (IEEE-T on PAMI, July 2008) proved that the average error rate of \(m \) bagged classifiers can be modelled as:

\[
E_{\infty} + \frac{1}{m} \left[E_1 - E_{\infty} \right]
\]

- Asymptotic error
- Error using just one bagged classifier

This theoretical result says us that combining \(m \) bagged classifiers one can expect on average to reach a fraction \((m-1)/m\) of the maximum error reduction achievable with an infinite number of classifiers (asymptotic error of Bagging)

- With \(m=10 \) the error reduction is already 90%
- This model fits well with results of Breiman and other researchers
AdaBoost

• AdaBoost algorithm (Freund and Schapire, 1995) is aimed at producing highly accurate (“strong”) classifiers by combining “weak” instances of a given base classifier

• AdaBoost iteratively constructs an ensemble of N complementary classifiers

• Additional weak classifiers are introduced iteratively if necessary, and they are trained on samples that previous classifiers have misclassified

• The resulting classifiers are combined by weighted voting

➢ AdaBoost is an ensemble learning method, not a general purpose method for constructing multiple classifiers like Bagging
Basic Scheme of AdaBoost

Given a set \(L = (x_1, \ldots, x_n) \) of \(n \) training patterns

Initialize \(D_1(i) = 1/n, \ i=1,\ldots,n; \ L_1 = L \)

\(-D_t(i) \) denotes the weight of pattern \(x_i \) on round \(t \)

For \(t=1,\ldots,N \):

\(-\)Train the base classifier \(c_t \) on \(L_t \)
\(-\)Compute the error rate \(\varepsilon_t \) of \(c_t \) on the original training set \(L \)

\(-\)Set \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) \)

\(-\)Update \(D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } x_i \text{ is correctly classified} \\ e^{\alpha_t} & \text{if } x_i \text{ is misclassified} \end{cases} \)

Combine the \(N \) classifiers by weighted majority voting, using the weights \(\alpha_t \)
Methods based on Input Feature Manipulation

• Manual or automatic feature selection/extraction can be used for generating diverse classifiers using different feature sets

• For example, subsets related to different sensors, or subsets of features computed with different algorithms

• Different feature sets can be generated using different feature extraction algorithms applied to the original set

• Manual or automatic selection can work with set of redundant/irrelevant features

• The “hope” is that classifiers using different features are complementary
The Random Subspace Method

The Random Subspace Method (RSM) consists in random selection of a certain number of subspaces from the original feature space, and train a classifier on each subspace (T.K. Ho, *IEEE-T on PAMI*, 1998).

Let \(X \subseteq \mathbb{R}^n \) be a \(n \)-dimensional feature space.

\[
x = [x_1, x_2, x_3, \ldots, x_i, \ldots, x_{n-2}, x_{n-1}, x_n]
\]

We can project this vector into a \(m \)-dimensional subspace, by selecting \(m \) random components.
RSM: multiple subspace generation

We can generate multiple “projected” data sets, by varying the vector \(v \).

\[
\begin{align*}
X &= \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} \\
X^{(1)} &= \begin{bmatrix} x_{v_1(1)} \\ x_{v_2(1)} \\ \vdots \\ x_{v_m(1)} \end{bmatrix} \\
X^{(2)} &= \begin{bmatrix} x_{v_1(2)} \\ x_{v_2(2)} \\ \vdots \\ x_{v_m(2)} \end{bmatrix}
\end{align*}
\]
Decision fusion with RSM

The next step is to combine the information extracted by each classifier trained on the feature subspace.

Projected Data Set based on v(1) → Classifier 1
Projected Data Set based on v(2) → Classifier 2

........
........
........
Projected Data Set based on v(i) → Classifier i

FUSER

Experiments showed that simple combiners (e.g., average of classifiers outputs) work well with RSM generated classifiers.
RSM: Application to Decision Forests

![Graph showing performance of different methods with increasing number of trees.](image)

- random subspaces
- bootstrapping
- boosting
- C4.5
- C4.5 with pruning
Some Remarks on RSM

RSM works well for large feature sets with redundant features

In some sense, this approach does not suffer from the “curse” of dimensionality.

Key issue: the number of random features to generate

Random Subspace Method exploits concepts of the theory of stochastic discrimination by E. Kleinberg.

The concept of “weak” classifier

• Some methods (Bagging, Boosting, RSM) use “weak” classifiers

• Why should we use “weak” classifiers if we can design strong ones?

• Because designing a strong classifier by fusion of multiple weak classifiers can be simpler (the “curse” of designer)

• Because weak classifiers, with low “variance”, can suffer less small sample size issues
Noise Injection

Injecting noise into the input features can be used to manipulate the training data, so creating different training sets.

For example, we can add a zero mean and small covariance noise vector n to each training vector X:

$$X^{\text{new}} = X + n$$

It is possible to generate m artificial vectors for each training pattern.

Raviv and Intrator (1996) combined bootstrap sampling of the training data with injecting noise. The x value of each training example was perturbed by adding Gaussian noise.

Other possibility: data splitting + adding noise
The K-NN Direct Noise Injection

In order to take in account the *intrinsic dimensionality* of the data, we can add noise along the direction of the K nearest neighbors of each pattern.

M. Skurichina et al., 2000

F. Roli, S. Raudys, G. Marcialis, MCS 2002

Artificial patterns generated by standard Gaussian noise

Nearest Neighbors to the training pattern

Artificial patterns generated by K-NN Direct Noise Injection
Manipulating the Output Features

Another interesting idea is building complementary classifiers by partitioning the set of classes in different ways.

Each component classifier is trained to solve a subset of the N class problem. For instance, each classifier could solve a two class problem (e.g., One vs. All strategy).

A suitable combination method able to “recover” the original N class problem is necessary.

To this end, Dietterich and Bakiri described a technique called Error-Correcting Output Coding (ECOC).

ECOC works well for a large number of classes. But it could be applied to subclasses within a smaller number of classes.
ECOC: Basic Idea

Let \(X \subseteq \mathbb{R}^n \) be a n-dimensional input space.
Let \(\{c_1,\ldots,c_k\} \) be a set of classes.
Let \(\{f_0,\ldots,f_{m-1}\} \) be a set of \(m \) functions, with \(f_i : X \rightarrow \{0, 1\} \)

For each class \(c_j \), let \(b^{(j)} = \{b_0,\ldots,b_{m-1}\} \) be the associated “codeword”, with
\[
 f_i = b_i \in \{0, 1\}
\]

We construct a decoding matrix whose rows are the classes \(c_j \) and columns are the bit \(b_i \) of the codeword associated to each class.
ECOC: An example of Decoding Matrix

A 15-bit ECOC for a ten-class problem:

<table>
<thead>
<tr>
<th>Class</th>
<th>f_0</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>f_5</th>
<th>f_6</th>
<th>f_7</th>
<th>f_8</th>
<th>f_9</th>
<th>f_{10}</th>
<th>f_{11}</th>
<th>f_{12}</th>
<th>f_{13}</th>
<th>f_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
ECOC classification

In the previous example, a separate boolean function f_i is learned (e.g. through a MLP or a DT) for each bit position of the error-correcting code.

To classify a new example $x \in X$, each of the learned functions $f(x) = \{f_0(x), \ldots, f_{14}(x)\}$ is evaluated to produce a 15-bit string.

This is then mapped to the nearest of the ten codewords, according to a “distance measure” (e.g., the Hamming distance):

$$\text{class} = \arg \min_k d(b^{(k)}, f(x))$$
Why should Bagging work?

Send me via mail (roli@diee.unica.it) your justified answer